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A theoretical analysis is made of the effect described in the title. It is shown that 
both (i) the eigenfrequencies of the inertial waves and (ii) the moment produced 
by the inertial wave pressure distribution are independent of the location of the 
off-axis cylinders. Hence, one can use Stewartson's tables computed for a cen- 
trally located cylinder to calculate the frequencies and residues for an eccentric- 
ally located cylinder. 

1. Introduction 
There exists, at present, no theoretical analysis for the dynamical effect 

of inertial waves on the gyroscopic motion of a body containing one or more 
liquid-filled off-axis cylinders asshown in figure 1.  There, six liquid-filled cylinders 
are arranged concentrically around a seventh cylinder which is centred on the 
axis of the body.? To determine the effect of the inertial waves on the central 
cylinder, one can immediately employ the Stewartson tables and formulae 
(Stewartson 1959). However, it would seem obvious that such formulae and tables 
would not be applicable to determining the effect of inertial waves in the off- 
axis cylinders. Hence, an analysis of the effect of these waves when they occur in 
eccentrically located cylinders would be useful, and is herewith presented. 

2. The fluid-dynamical equations and implications for stability 
2.1. The equations 

Following Stewartson, we assume (figure 1) that the X' and Y' axes are rotating 
uniformly about the 2' axis with angular speed IR, and that the liquid is initially 
rotating as a rigid body with the same angular speed. Then, the velocity V' at 
some point in the liquid in one of the cylinders (see figure 1) is given by 

V'=  Qkx(K+R). (1)  

Adopting body-fixed X, Y and 2 axes, we let the perturbation of the above 
motion be such that the angular velocity vector of these body-fixed moving axes 
is subsequently given by 

0 = (wx ,  up, Q) = O f f  ( O , O ,  n), ( 2 )  
t Such an arrangement of cylinders is currently used in a liquid-filled artillery shell. 
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FIGURE 1 .  Body containing off-axis cylinders and a body-iked co-ordinate system 
for a typical off-axis cylinder. 

where o’ = ( w x ,  m y ,  0) is the angular velocity perturbation and is assumed small 
in the sense that squares and products will be neglected. Then, that point in the 
liquid which formerly had velocity V’ now has velocity 

V =  Qkx(g+R)+q ,  (3) 

where q the velocity with respect to the original axes, i.e. the X‘, Y‘ and 2’ 
axes characterized by the angular velocity vector (0, 0, SZ) ,  is also assumed to 
be small in the same sense as 0’. 

We first consider the basic unperturbed state, for which the velocity as given 
by (I) satisfies the Euler equation 

(4) Q2k x [k x (5 + R)] = g - VP,/p,  

where P, is the pressure in the uniformly rotating unperturbed liquid of density p. 
Let us determine the shape of the free surface in the eccentric cylinder before the 
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gc. Hence, we perturbation. Following Stewartson, we assume that Q2a2 
can neglect the gravity term in (4) and since (see figure 1) R = ri, + zk, 

Q2k x [k x (5 + R)] = - Q2ri, - Q2[E cos Q, cos 81. - 6 cos Q, sin He] .  

We can, then, rewrite (4) as 

- Q2[6 cos Q, cos Oi,  - < cos Q, sin Oie] = - V(P, /p  - BQ2r2). 

E / p  - +!22.r2 = Q2r g cos Q, cos 8 + C,, 

(5) 

(6) 

where C, is a constant of integration whose determination now follows. Let 
r = b-a, 8 = 0 and z = 0 (figure 1) be the co-ordinates of some point on the free 
surface. Then, since P' = Po, say, there, we have 

From the integration of ( 5 )  we have 

c, = P0/p-g22(b-a)2- Q2(b--a)[cosq5. (7) 

(8) 

(9) 

This is the expression for the pressure at any point in the liquid before the 
perturbation, and from it we can determine the steady-state free-surface con- 
figuration by setting P, = Po. Hence, from (8) we have 

(10) 

Hence, we can rewrite (6) as 

e / p  - +Q2r2 = Q2r cos q5 cos 8 + pO/p - Q2(b - a) [*(b - a) + cos $1 
or 3 = Po + p (  +a2) [rz - (b  - a)2] + pQ2< cos Q,[r cos O - (b - a)]. 

( X +  gcosQ,)2+ Y2 = (b-u)2+ 2(b - a) 6 cos 6 + pccos2q5, 

[(b - up+ 2(b - a) 6 cos # + f"os"]f 

which, as anticipated, is a cylindrical surface of radius 

with centre a t  X = -<COB$, Y = 0. 

in the liquid is given by (3). The linearized Euler equation now reads 
We now consider the perturbed state, for which the velocity at some point 

(as/& + 2Qk x q - Q2[5 cos q5 cos Oi, - < cos Q, sin Oi,] = - V[P/p - +QZr2], (1 1) 

where P is now the pressure in the perturbed liquid. Subtracting (5) from (11) 
we have 

where P', since it is small, may be termed a, perturbation pressure and satisfies 

(aq/at) + 2Qk x q = - V(P-P,)/p - VP'/p, (12) 

(13) P' = P -Po - p ( & @ )  [rz- (b - 4 2 1  -pQ2<cos Q,[r cos 8- (b  -a)] .  

By taking the curl of (12), then the time derivative and then the dot product 
with 2Qk, and using the result in conjunction with the divergence of (12), we 

a2(V2Pr)/at2+ (2Q)2 (k. V)2Pr  = 0, (14) get 

a kind of 'wave' equation for the pressure perturbation. Following Stewartson, 
we seek normal-mode solutions of this equation. Hence, setting 

P' = P,(r, 8, z )  ed, 
we have 

V2Pl+(2Q/9)2 (k.V)2Pl = 0, (15) 
11-2 
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a partial differential equation to be solved subject to appropriate boundary 
conditions. 

It can be shown that the failure of the above-determined free surface t o  
coincide with any of the generatrices of the offset cylinder generates a boundary 
condition that makes the problem mathematically intractable, Hence, we con- 
sider only the completely filled offset cylinder, for which b = 0 (see figure 1). 
Mathematically tractable boundary conditions then follow easily from the fact 
that, on the solid surfaces, 

where R, refers to some point on the solid surface and n is the outward-directed 
normal. This follows from the fact that q is the velocity of the liquid with respect 
to axes having the angular velocity (0, 0, a), and o’ x (5 + R,) is the velocity of 
the corresponding point of the solid surface with respect to the same axes. 

Since the governing equation (15) is in terms of Pl, we need to express q 
in terms of Pl. To do so, we set q = q(r,  8, z )  e& and, as before, P’ = Pl(r, 8, x )  est 
in (12). Then, taking the dot product and the cross product of (2Q/s) k with (12), 
respectively, and using the two results in conjunction with (12), we can show 
that 

q.n = w ’ x  (c+nR,).n, (16) 

q = (2Q/s) [(k~)-(s/2Q)-(k(2Q/s)k.}]VP1/ps[l+(2Q/s)~]. (17) 

Hence, the boundary conditions on the solid surfaces are 

= - sr (w,sin 8 -up cos 0) + s[ (cos $)up, 

In  these expressions, we let Pz = Pl + szk(cos q5) wp. Then we can rewrite them 
as 

= - sr (wx sin 8 - wp cos 8), 

Finally, from (17) and the fact that the liquid is incompressible, we have 

v . q = 0 = azP2/ar2 + ( l / r )  (aP,/ar) + (l/r2) a2Pz/a02 + [ 1 + (2Q/s)2] a2P2/ax? (22) 

2.2. Implications for stability 

For a non-eccentrically located cylinder, i.e. one whose axis lies along the Z 
axis and for which $ sin q5 = 0, the boundary conditions are, of course, the same 
as Stewartson’s expressions (2.8), (2.10) and (2.4). For the off-axis cylinder, for 
which (sin q5 + 0, calculations of the moment associated with the liquid’s natural 
frequencies reveal that the & sin q5 term makes no contribution; i.e. the expression 
with which it is functionally involved integrates to zero. Hence, the ‘effective’ 
terms on the right-hand sides of (20) and (21) are identical to Stewartson’s 
expressions (2.8) and (2.10), and the liquid in each off-axis cylinder has an effect 
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indistinguishable from that in the centred cylinder. One can, then, use Stewart- 
son’s tables and formulae for the eccentric cylinders as well as for the central one 
(the net residue or moment will be the sum of those for each cylinder). 

Physically, these conclusions are reasonable, for the moments due to the liquid 
oscillations are couples, and the moments of couples are independent of their 
location; also the liquid frequencies are natural frequencies, the values of which 
are independent of the nature of the disturbance that generated them. 

3. Summary 
The dynamical effect of inertial waves on the eccentric cylinders is as though 

each cylinder were located on the axis of the shell, each having the same eigen- 
frequencies. Hence, one can use Stewartson’s tables and formulae, computed 
for a centrally located cylinder, to determine the eigenfrequencies and moments 
(residues) for the liquid in each off-axis cylinder. However, the net moment 
(residue) is the sum of the moments for each cylinder. Symmetry considerations 
for the equations of motion of the system would demand, of course, that there 
be an even number of cylinders surrounding the central one. 
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